Internationally, multiple grading scales are used to evaluate, including letter grades, numerical grades, percentages, marks, and more. You must convert your existing grades to the required ones depending on your requirements and the institution you are applying to. Our tools help you make these conversions easy. This tool is the marks percentage calculator for your conversions.
A marks percentage calculator is a simple tool created to help students and professionals convert numbers or marks into percentages.
Percentage is one of the performance measurement metrics like the other ones. It’s a fraction where the denominator is 100. So the formula used here will be (A / B * 100), to understand this let’s say you got 50 right questions out of 100, your percentage here will be 50%.and here is what we have done [(50 / 100) * 100].
Mostly you get confused about the difference between these two but we have tried to explain it most simply and effectively. A percentage is a ratio showing the individual performance whereas a percentile is a ratio that is compared with others. To further ease this down let us go through an example. Mannu has got 80 marks out of 100 in a class of 20 students. What would be his percentage and percentile here?
Mannu’s Percentage = [(Marks of Mannu / Total Marks) * 100]
= [(80 / 100) * 100]
= 80 %
Mannu’s Percentile = [(Number of Students having Less Marks than Mannu / Total Number of Students) * 100]
= [(15 / 20) * 100]
= 75 percentile
To calculate a marks percentage of any number we use the following metrics:
Percentage = [(Number / Total Numbers) * 100]
Let’s say you want to calculate a percentage of 7 marks out of 10.
Percentage = [(7 / 10) * 100] = 70%
Let’s assume you got 41 marks out of 60 in a Maths test. We can calculate percentage like this:
Percentage = [(Marks You Got / Total Marks) * 100]
Percentage = [(41 / 60) * 100] = 68.33 %
To find the overall percentage for multiple subjects, simply follow the below steps as it is also quite straightforward.
Step 01: Adding Subjects Obtained Marks
Step 02: Adding Total Marks of All Subjects
Step 03: Divide the Total Obtained Marks by the Total Marks
For example, a college student got the following marks in 4 subjects:
Subject 1: 85 out of 100
Subject 2: 75 out of 100
Subject 3: 95 out of 100
Subject 4: 80 out of 100
To calculate the marks percentage,
Total Scored Marks = 85 + 75 + 95 + 80 = 335
Total Marks = 100 + 100 + 100 + 100 = 400
Percentage = (335 / 400) * 100 = 83.75%
The table below shows marks and their conversion into percentages for a maximum score of 300:
Marks |
Marks Percentage (%) |
300 |
100% |
290 |
96.67% |
280 |
93.33% |
270 |
90.00% |
260 |
86.67% |
250 |
83.33% |
240 |
80.00% |
230 |
76.67% |
220 |
73.33% |
210 |
70.00% |
200 |
66.67% |
190 |
63.33% |
180 |
60.00% |
170 |
56.67% |
160 |
53.33% |
150 |
50.00% |
140 |
46.67% |
130 |
43.33% |
120 |
40.00% |
110 |
36.67% |
100 |
33.33% |
90 |
30.00% |
80 |
26.67% |
70 |
23.33% |
60 |
20.00% |
50 |
16.67% |
40 |
13.33% |
30 |
10.00% |
20 |
6.67% |
10 |
3.33% |
Converting fractions to percentages has nothing different to implement just divide the numerator / denominator and multiply it with 100. Let’s say you need to convert 4 / 9 into a percentage, simply
{(4 / 9) * 100}.
As we already discussed the calculation of percentage from marks above, let’s discuss some further evaluation metrics here:
To calculate this we will take you through an example. Let’s say we got a product price increase for some reason so:
Percentage Increase = [{(New Price – Old Price) / Old Price} * 100]
For a decrease, we will reverse the same transaction.
Percentage Decrease = [{(Old Price – New Price) / Old Price} * 100]
It’s very simple assuming that we are considering this percentage out of 100, so 1 mark will make one percentage. Here is a example = [{(1 / 100) * 100} = 1].
Calculating the SSC percentage is not different from the same metrics which is equal to the sum of total marks obtained divided by total marks then multiplied by 100.
Getting an average of the percentage of all the classes is pretty much simple. Just sum the total marks obtained by the total number of students, divide it by the total maximum marks, and then multiply it by 100 to get the result.
For example, there were four students in the class with the following marks 60, 70, 80, and 90. So:
Average Percentage = [(60 + 70 + 80 + 90) / 4].
Here we have some tips and tricks for you to remember because these tips will help you calculate percentages in a while.
Regular practice will enable you to get these tips on your fingers and you will be a pro for future calculations.
To sum it up, we believe that this marks percentage calculator will help teachers, students, and professionals to convert all numbers and marks into a % with just a click of a button. So get a great command of your performance reviews, improvements, and calculations by just using our tool. Also we never compromise on privacy of our users so we believe that you will use our tools regularly for these conversions.
Ans: The standard formula used here is Percentage = [(Value / Total Value) * 100].
Ans: To calculate the average just do the sum of all the numbers divided by the total numbers.
Ans: For this calculation just use profit percentage formula = [(Profit / Cost price) * 100]
Ans: Add the marks obtained in all six subjects, divide by the total maximum marks for all subjects, and multiply by 100.
Ans: Divide the obtained marks by the maximum marks of the test and then multiply it by 100.
Ans: You can easily do the same in Excel by putting this formula into any of the rows = [(Number / Total) * 100].
Ans: Yes, the standard method to calculate the cgpa to percentage is already what we have shared with you but yes some institutes must have their metrics.
Ans: Yes, there’s a specific formula to calculate the increase and decrease of percentage which is already discussed above.
Ans: This conversion is of high significance as this will enable you to analyze your performance with an impact of increased and decreased trends.
Ans: Calculating the percentages for all these classes contains the same formula as we used in our tool.